关键词:
阿特拉津降解菌DNS32
发酵培养基
响应面法
人工神经网络
遗传算法
优化
摘要:
为了提高阿特拉津降解菌Acinetobacter sp. DNS32的产量,分别采用响应曲面法和基于人工神经网络的遗传算法对阿特拉津降解菌DNS32发酵培养基中3个重要基质成分(玉米粉、豆饼粉、K2HPO4)进行优化研究。响应曲面法确定3种成分的含量为玉米粉 39.494 g/L,豆饼粉 25.638 g/L和K2HPO4 3.265 g/L时,预测发酵活菌最大生物量为7.079×108 CFU/mL,实测量为7.194×108CFU/mL;人工神经网络结合遗传算法优化确定3种主要成分含量为玉米粉为39.650 g/L,豆饼粉为25.500 g/L,K2HPO4为2.624 g/L时,预测最大值为7.199×108 CFU/mL,实测量为7.244×108 CFU/mL;最终确定培养基配方:玉米粉为39.650 g/L,豆饼粉为25.500 g/L,K2HPO4为2.624 g/L,CaCO3为3.000 g/L,MgSO4·7H2O和NaCl均为0.200 g/L;优化后阿特拉津降解菌DNS32发酵生物量比优化前提高了36.6%。结果表明,在阿特拉津降解菌DNS32发酵培养基组分优化方面,响应面法和基于人工神经网络的遗传算法都是可行的,基于人工神经网络的遗传算法具有更好的拟合度和预测准确度。